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Abstract. Let R be a commutative ring with identity and M be an R-

module. The zero divisor graph of M is denoted by Γ(M). In this study,

we are going to generalize the zero divisor graph Γ(M) to submodule-

based zero divisor graph Γ(M,N) by replacing elements whose product

is zero with elements whose product is in some submodule N of M . The

main objective of this paper is to study the interplay of the properties of

submodule N and the properties of Γ(M,N).
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1. Introduction

Let R be a commutative ring with identity. The zero divisor graph of R,

denoted Γ(R), is an undirected graph whose vertices are the nonzero zero divi-

sor of R with two distinct vertices x and y are adjacent by an edge if and only
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if xy = 0. The idea of a zero divisor graph of a commutative ring was intro-

duced by Beck in [3] where he was mainly interested with colorings of rings.

The definition above first is appeared in [2], which contains several fundamen-

tal results concerning Γ(R). The zero-divisor graph of a commutative ring is

further examined by Anderson, Levy and Shapiro, Mulay in [1, 9]. Also, the

ideal-based zero divisor graph of R is defined by Redmond, in [12].

The zero divisor graph for modules over commutative rings has been defined

by Behboodi in [4] as a generalization of zero divisor graph of rings. Let R

be a commutative ring and M be an R-module, for x ∈ M , we denote the

annihilator of the factor module M/Rx by Ix. An element x ∈ M is called a

zero divisor, if either x = 0 or IxIyM = 0 for some y 6= 0 with Iy ⊂ R. The set

of zero divisors of M is denoted by Z(M) and the associated graph to M with

vertices in Z∗(M) = Z(M) \ {0} is denoted by Γ(M), such that two different

vertices x and y are adjacent provided IxIyM = 0.

In this paper, we introduce the submodule-based zero divisor graph that is a

generalization of zero divisor graph for modules. Let R be a commutative ring,

M be an R-module and N be a proper submodule of M . An element x ∈ M is

called zero divisor with respect to N , if either x ∈ N or IxIyM ⊆ N for some

y ∈ M \N with Iy ⊂ R. We denote Z(M,N) for the set of zero divisors of M

with respect to N . Also, we denote the associated graph to M with vertices

Z∗(M,N) = Z(M,N) \N by Γ(M,N), and two different vertices x and y are

adjacent provided IxIyM ⊆ N .

In the second section, we define a submodule-based zero divisor graph for a

module and we study basic properties of this graph. In the third section, if M is

a finitely generated semisimple R-module such that its homogenous components

are simple and N is a submodule of M , we determine some relations between

Γ(M,N) and Γ(M/N), where M/N is the quotient module of M , we show

that the clique number and chromatic number of Γ(M,N) are equal. Also, we

determine some submodule of M such that Γ(M,N) is an empty or a complete

bipartite graph.

Let Γ be a (undirected) graph. We say that Γ is connected if there is a

path between any two distinct vertices. For vertex x the number of graph

edges which touch x is called the degree of x and is denoted by deg(x). For

vertices x and y of Γ, we define d(x, y) to be the length of a shortest path

between x and y, if there is no path, then d(x, y) = ∞. The diameter of Γ is

diam(Γ) = sup{d(x, y)|x and y are vertices of Γ}. The girth of Γ, denoted by

gr(Γ), is the length of a shortest cycle in Γ (gr(Γ) = ∞ if Γ contains no cycle).

A graph Γ is complete if any two distinct vertices are adjacent. The complete

graph with n vertices is denoted by Kn (we allow n to be an infinite cardinal).

The clique number, ω(Γ), is the greatest integer n > 1 such that Kn ⊆ Γ, and

ω(Γ) = ∞ if Kn ⊆ Γ for all n ≥ 1. A complete bipartite graph is a graph Γ

which may be partitioned into two disjoint nonempty vertex sets V1 and V2
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such that two distinct vertices are adjacent if and only if they are in different

vertex sets. If one of the vertex sets is a singleton, then we call that Γ is a star

graph. We denote the complete bipartite graph by Km,n, where |V1| = m and

|V2| = n (again, we allow m and n to be infinite cardinals); so a star graph is

K1,n, for some n ∈ N.
The chromatic number, χ(Γ), of a graph Γ is the minimum number of colors

needed to color the vertices of Γ, so that no two adjacent vertices share the

same color. A graph Γ is called planar if it can be drawn in such a way that

no two edges intersect.

Throughout this study, R is a commutative ring with nonzero identity, M is

a unitary R-module and N is a proper submodule of M . Given any subset S

of M , the annihilator of S is denoted by ann(S) = {r ∈ R|rs = 0 for all s ∈ S}

and the cardinal number of S is denoted by |S|.

2. Submodule-based Zero Divisor Graph

Recall that R is a commutative ring, M is an R-module and N is a proper

submodule of M . For x ∈ M , we denote ann(M/Rx) by Ix.

Definition 2.1. Let M be an R-module and N be a proper submodule of M .

An x ∈ M is called a zero divisor with respect to N if x ∈ N or IxIyM ⊆ N

for some y ∈ M \N with Iy ⊂ R.

We denote the set of zero divisors of M with respect to N by Z(M,N) and

Z∗(M,N) = Z(M,N)\N . The submodule-based zero divisor graph of M with

respect to N , Γ(M,N), is an undirected graph with vertices Z∗(M,N) such

that distinct vertices x and y are adjacent if and only if IxIyM ⊆ N .

The following example shows that Z(M/N) and Z(M,N) are different from

each other.

Example 2.2. Let M = Z ⊕ Z and N = 2Z ⊕ 0. Then I(m,n) = 0, for all

(m,n) ∈ Z ⊕ Z. But I(m,n)+N = 2nZ whenever m ∈ 2Z and I(m,n)+N = 2Z
whenever m 6∈ 2Z. Thus (1, 0), (1, 1) ∈ Z∗(M,N) are adjacent in Γ(M,N), but

(1, 0) +N, (1, 1) +N 6∈ Z∗(M/N).

Proposition 2.3. If Z∗(M,N) = ∅, then ann(M/N) is a prime ideal of R.

Proof. Suppose that ann(M/N) is not prime. Then there are ideals I and J

of R such that IJM ⊂ N but IM 6⊆ N and JM 6⊆ N . Let x ∈ IM \ N and

y ∈ JM \N . Then IxJyM ⊆ IJM ⊆ N and Iy ⊂ R. Thus x ∈ Z∗(M,N), a

contradiction. Hence, ann(M/N) is a prime ideal of R. �

Lemma 2.4. Let x, y ∈ Z∗(M,N). If x − y is an edge in Γ(M,N), then for

each 0 6= r ∈ R, either ry ∈ N or x− ry is also an edge in Γ(M,N).

Proof. Let x, y ∈ Z∗(M,N) and r ∈ R. Assume that x − y is an edge in

Γ(M,N) and ry /∈ N . Then IxIyM ⊆ N . It is clear that Irx ⊆ Ix. So that

IxIryM ⊆ IxIyM ⊆ N and therefore, x− ry is an edge in Γ(M,N). �
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It is shown that the graphs are defined in [12] and [4], are connected with

diameter less than or equal to three. Moreover, it shown that if those graphs

contain a cycle, then they have the girth less than or equal to four. In the next

theorems, we extend these results to a submodule-based zero divisor graph.

Theorem 2.5. Γ(M,N) is a connected graph and diam(Γ(M,N)) ≤ 3.

Proof. Let x and y be distinct vertices of Γ(M,N). Then, there are a, b ∈

Z∗(M,N) with IaIxM ⊆ N and IbIyM ⊆ N (we allow a, b ∈ {x, y}). If

IaIbM ⊆ N , then x− a− b− y is a path, thus d(x, y) ≤ 3. If IaIbM * N , then

Ra∩Rb 6⊆ N , and for every d ∈ (Ra∩Rb) \N , x− d− y is a path of length 2,

d(x, y) ≤ 2, by Lemma 2.4. Hence, we conclude that diam(Γ(M,N)) ≤ 3. �

Theorem 2.6. If Γ(M,N) contains a cycle, then gr(Γ(M,N)) ≤ 4.

Proof. We have gr(Γ(M,N)) ≤ 7, by Proposition 1.3.2 in [7] and Theorem 2.5.

Assume that x1 − x2 − · · · − x7 − x1 is a cycle in Γ(M,N). If x1 = x4 then it

is clear that gr(Γ(M,N)) ≤ 3. So, suppose that x1 6= x4. Then we have the

following two cases:

Case 1. If x1 and x4 are adjacent in Γ(M,N), then x1 − x2 − x3 − x4 − x1 is

a cycle and gr(Γ(M,N)) ≤ 4.

Case 2. Suppose that x1 and x4 are not adjacent in Γ(M,N). Then Ix1
Ix4

M *
N and so there is a z ∈ (Rx1 ∩ Rx4) \ N . If z = x1, then z 6= x4 and

x3 − x4 − x5 − z − x3 is a cycle in Γ(M,N), by Lemma 2.4. If z 6= x1, then by

Lemma 2.4, x1 − x2 − z − x7 − x1 is a cycle and gr(Γ(M,N)) ≤ 4.

For cycles with length 5 or 6, by using a similar argument as above, one can

shows that gr(Γ(M,N)) ≤ 4. �

Example 2.7. Assume thatM = Z and p, q are two prime numbers. IfN = pZ,
then Γ(M,N) = ∅. If N = pqZ, then Γ(M,N) is an infinite complete bipartite

graph with vertex set V1 ∪ V2, where V1 = pZ \ pqZ and V2 = qZ \ pqZ and so

gr(Γ(M,N)) = 4.

Corollary 2.8. If N is a prime submodule of M , then diam(Γ(M,N)) ≤ 2

and gr(Γ(M,N)) = 3, whenever it contains a cycle.

Proof. Let x, y be two distinct vertices which are not adjacent in Γ(M,N).

Thus there is an a ∈ M \ N such that IaIxM ⊆ N . Since N is a prime

submodule, then IaM ⊆ N . Thus IaIyM ⊆ N , and then x− a− y is a path in

Γ(M,N). Then diam(Γ(M,N)) ≤ 2. �

Lemma 2.9. Let |Γ(M,N)| ≥ 3, gr(Γ(M,N)) = ∞ and x ∈ Z∗(M,N) with

deg(x) > 1. Then Rx = {0, x} and ann(x) is a prime ideal of R.

Proof. First we show that Rx = {0, x}. Let u − x − v be a path in Γ(M,N).

Then u − v is not an edge in Γ(M,N) since gr(Γ(M,N)) = ∞. If x 6= rx for

some r ∈ R and rx 6∈ N , then by Lemma 2.4, rx− u− x− v − rx is a cycle in
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Γ(M,N), that is a contradiction. So, for every r ∈ R either rx = x or rx ∈ N .

If there is an r ∈ R such that rx ∈ N , then we have either (1 + r)x ∈ N or

(1 + r)x = x. These imply that x ∈ N or rx = 0. Therefore, we have shown

that Rx = {0, x}.

Let a, b ∈ R and abx = 0. Then bx = 0 or bx = x. Hence, bx = 0 or ax = 0.

So, ann(x) is a prime ideal of R. �

Theorem 2.10. If N is a nonzero submodule of M and gr(Γ(M,N)) = ∞,

then Γ(M,N) is a star graph.

Proof. Suppose that Γ(M,N) is not a star graph. Then there is a path in

Γ(M,N) such as u − x − y − v. By Lemma 2.9, we have Ry = {0, y} and by

assumption u and y are not adjacent, thus IyM 6= 0. So that IyM = Ry. Also,

x− y − v is a path, thus IvIyM ⊆ N and IxIyM ⊆ N . Hence, IvRy ⊆ N and

IxRy ⊆ N . On the other hand, for every nonzero n ∈ N , we have

IvIy+nM ⊆ IvR(y + n) ⊆ Iv(Ry +N) ⊆ N

and similarly IxIy+nM ⊆ N . So that x − y − v − (y + n) − x is a cycle in

Γ(M,N), a contradiction. Therefore, Γ(M,N) is a star graph. �

Theorem 2.11. Let N be a nonzero submodule of M , |Γ(M,N)| ≥ 3 and

Γ(M,N) is a star graph. Then the following statements are true:

(i) If x is the center vertex, then Ix = ann(M).

(ii) Γ(M,N) is a subgraph of Γ(M).

Proof. (i) By Lemma 2.9, we have Rx = {0, x}. Thus either IxM = 0 or

IxM = Rx. Assume that IxM = Rx. If y is a vertex of Γ(M,N) such

that y 6= x, then deg(y) = 1 and IxIyM ⊆ N . Thus IyRx ⊆ N . Since

Ix+nIyM ⊆ IyR(x + n) ⊆ N for every nonzero element n ∈ N it concludes

that y = x+n. In this case, every other vertices of Γ(M,N) are adjacent to y,

a contradiction. Hence, IxM = 0 and Ix = ann(M).

(ii) It is obvious. �

Theorem 2.12. If |N | ≥ 3 and Γ(M,N) is a complete bipartite graph which

is not a star graph, then I2xM 6⊆ N , for every x ∈ Z∗(M,N).

Proof. Let Z∗(M,N) = V1∪V2, where V1∩V2 = ∅. Suppose that I2xM ⊆ N for

some x ∈ Z∗(M,N). Without loss of generality, we can assume that x ∈ V1.

By a similar argument with Lemma 2.9, either Rx = {0, x} or there is an

r ∈ R such that x 6= rx and rx ∈ N . If Rx = {0, x}, then IxM = Rx. Thus

IxRx ⊆ N . Now, for every y ∈ V2 and n ∈ N we get

IyIx+nM ⊆ IyR(x+ n) ⊆ Iy(Rx+N) ⊆ N

and IxIx+nM ⊆ N . Then, x + n ∈ V1 ∩ V2, a contradiction. So, assume that

x 6= rx and rx ∈ N for some r ∈ R. Since Irx+x ⊆ Ix, then IxIrx+xM ⊆ N

and for all y ∈ V2, IyIrx+xM ⊆ N . Thus rx+x ∈ V1 ∩V2, a contradiction. �
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An R-module X is called a multiplication-like module if, for each nonzero

submodule Y of X, ann(X) ⊂ ann(X/Y ). Multiplication-like module have

been studied in [8, 13].

A vertex x of a connected graph G is a cut-point, if there are vertices u, v of

G such that x is in every path from u to v and x 6= u, x 6= v. For a connected

graph G, an edge E of G is defined to be a bridge if G− {E} is disconnected,

see [6].

Theorem 2.13. Let M be a multiplication-like module and N be a nonzero

submodule of M . Then Γ(M,N) has no cut-points.

Proof. Suppose that x is a cut-point of Γ(M,N). Then there exist vertices

u, v ∈ M \N such that x lies on every path from u to v. By Theorem 2.5, the

shortest path from u to v has length 2 or 3.

Case 1. Suppose that u−x−v is a path of shortest length from u to v. Since x is

a cut point x, u, v aren’t in a cycle. By a similar argument to that of Lemma 2.9,

we have Rx = {0, x}. On the other hand, IxM ⊆ Rx andM is a multiplication-

like module, so we have IxM = Rx. Hence IuRx ⊆ N and IvRx ⊆ N . Also, for

every nonzero n ∈ N , we have IuIx+nM ⊆ Iu(Rx+N) ⊆ N and IvIx+nM ⊆ N .

Therefore, u− (x+ n)− v is a path from u to v, a contradiction.

Case 2. Suppose that u−x−y−v is a path in Γ(M,N). Then, we have IxM =

Rx and for every nonzero n ∈ N , we have IyIx+nM ⊆ N and IuIx+nM ⊆ N .

Thus u− (x+ n)− y − v is a path from u to v, a contradiction. �

Theorem 2.14. Let M be a multiplication-like module and N be a nonzero

submodule of M . Then Γ(M,N) has a bridge if and only if Γ(M,N) is a graph

on two vertices.

Proof. If |Γ(M,N)| = 3, then Γ(M,N) = K3, by Theorem 2.11, and it has

no bridge. Assume that |Γ(M,N)| ≥ 4 and x − y is a bridge. Thus there is

not a cycle containing x − y. Without loss of generality, we can assume that

deg(x) > 1. Thus, there exists a vertex z 6= y such that z − x is an edge

of Γ(M,N). Then Rx = {0, x} and IxM = Rx. Hence, for every n ∈ N ,

IzIx+nM ⊆ N and IyIx+nM ⊆ N , a contradiction. Therefore, Γ(M,N) has

not a bridge. The converse is clear. �

3. Submodule-based Zero Divisor Graph of Semisimple Modules

A nonzero R-module X is called simple if its only submodules are (0) and

X. An R-module X is called semisimple if it is a direct sum of simple modules.

Also, X is called homogenous semisimple if it is a direct sum of isomorphic

simple modules.

In this section, R is a commutative ring and M is a finitely generated

semisimple R-module such that its homogenous components are simple and
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N is a submodule of M . The following theorem has a crucial role in this

section.

Theorem 3.1. Let x, y ∈ M \ N . Then x, y are adjacent in Γ(M,N) if and

only if Rx ∩Ry ⊆ N .

Proof. Let M =
⊕

i∈I Mi, where Mi’s are non-isomorphic simple submodules

of M . By assumption N is a submodule of M , so there exists a subset A

of I such that M = N ⊕ (
⊕

i∈A Mi) and so ann(M/N) = ann(
⊕

i∈A Mi) =⋂
i∈A ann(Mi). Assume that x, y ∈ M \N are adjacent in Γ(M,N) and Rx ∩

Ry 6⊆ N . Thus there exists α ∈ I such that Mα ⊆ (Rx ∩ Ry) \ N . Also,

there exist subsets B ⊂ I and C ⊂ I such that M = Rx ⊕ (
⊕

i∈B Mi) and

M = Ry⊕(
⊕

i∈C Mi). Therefore, Ix =
⋂

i∈B ann(Mi) and Iy =
⋂

i∈C ann(Mi).

Since IxIyM ⊆ N , we have IxIy ⊆ ann(M/N). For every i, j ∈ I, ann(Mi)

and ann(Mj) are coprime, then

IxIy = [
⋂

i∈B

ann(Mi)][
⋂

i∈C

ann(Mi)] =
∏

i∈B∪C

ann(Mi)

⊆
⋂

i∈A

ann(Mi) ⊆ ann(Mr),

for all r ∈ A. Thus for any r ∈ A there exists jr ∈ B ∪ C such that

ann(Mjr ) ⊆ ann(Mr). So that ann(Mjr ) = ann(Mr) implies that Mjr
∼= Mr

and by hypothesis Mjr = Mr. Hence,

Mα ⊆
⊕

i∈A Mi ⊆
⊕

j∈B∪C Mj .

Thus there exists γ ∈ B ∪ C such that Mα = Mγ , also

Mα ⊆ Rx ∩Ry = (
⊕

i∈I\B Mi) ∩ (
⊕

i∈I\C Mi).

Therefore, α ∈ I \ (B ∪ C), a contradiction. The converse is obvious. �

Corollary 3.2. Let x, y ∈ M \N be such that x+N 6= y +N . Then

(i) x and y are adjacent in Γ(M,N) if and only if x + N and y + N are

adjacent in Γ(M/N).

(ii) if x and y are adjacent in Γ(M,N), then all distinct elements of x+N

and y +N are adjacent in Γ(M,N).

Proof. (i) Let M =
⊕

i∈I Mi, where Mi’s are non-isomorphic simple submod-

ules of M . Suppose that x and y are adjacent in Γ(M,N), Rx =
⊕

i∈A Mi,

Ry =
⊕

i∈B Mi and N =
⊕

i∈C Mi. Then Rx + N =
⊕

i∈A∪C Mi and

Ry +N =
⊕

i∈B∪C Mi. Thus,

(Rx+N) ∩ (Ry +N) =
⊕

i∈(A∪C)∩(B∪C)

Mi =
⊕

i∈(A∩B)∪C

Mi = (Rx ∩Ry) +N.

By Theorem 3.1, we have Rx ∩Ry ⊆ N hence,

Ix+NIy+NM ⊆ (Rx+N) ∩ (Ry +N) = (Rx ∩Ry) +N = N.
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Therefore, x+N and y+N are adjacent in Γ(M/N). The converse is obvious.

(ii) Let x, y ∈ Z∗(M,N) be adjacent in Γ(M,N). Then Rx ∩ Ry ⊆ N by

Theorem 3.1. So for every n, n′ ∈ N we have

Ix+nIy+n′M ⊆ R(x+ n) ∩R(y + n′) ⊆ (Rx+N) ∩ (Ry +N) = N.

Hence, x+ n and y + n′ are adjacent in Γ(M,N). �

In the following theorem, we prove that the clique number of graphs Γ(M,N)

and Γ(M/N) are equal.

Theorem 3.3. If N is a nonzero submodule of M , then ω(Γ(M/N)) = ω(Γ(M,N)).

Proof. First we show that I2m+NM 6⊆ N for each 0 6= m + N ∈ M/N .

Assume that N = ⊕i∈AMi and m = (mi)i∈I ∈ M \ N . Then Im+N =⋂
i6∈A,mi=0 ann(Mi). Hence, Im+N = I2m+N . Thus I2m+NM 6⊆ N since there is

at least one j ∈ I \A such that mj 6= 0.

Now, Corollary 3.2 implies that ω(Γ(M/N)) ≤ ω(Γ(M,N)). Thus, it is

enough to consider the case where ω(Γ(M/N)) = d < ∞. Assume that G

is a complete subgraph of Γ(M,N) with vertices m1,m2, · · · ,md+1, we pro-

vide a contradiction. Consider the subgraph G∗ of Γ(M/N) with vertices

m1 + N, · · · ,md+1 + N . By Corollary 3.2, G∗ is a complete subgraph of

Γ(M,N). Thus mj +N = mk +N for some 1 ≤ j, k ≤ d+ 1 with j 6= k since

ω(Γ(M/N)) = d. We have Imj
Imk

M ⊆ N . Therefore, Rmj ∩ Rmk ⊆ N and

so Imj+NImk+NM ⊆ N . Hence, I2mj+NM ⊆ N , that is a contradiction. �

In the following theorem, we show that there is a relation between ω(Γ(M,N))

and χ(Γ(M,N)).

Theorem 3.4. Assume that M =
⊕

i∈I Mi, where Mi’s are non-isomorphic

simple submodules of M and N =
⊕

i∈A Mi is a submodule of M for some

A ⊂ I. Then ω(Γ(M,N)) = χ(Γ(M,N)) = |I| − |A|.

Proof. Suppose that I \ A = {1, · · · , n} so M1, · · · ,Mn 6⊆ N . Let for 1 ≤ k ≤

n− 1

Lk = {m ∈ M : m has k nonzero components }

and let for 1 ≤ s ≤ n

L1
s = {m ∈ L1 : the sth component of m is nonzero}.

If m ∈ L1
s and m′ ∈ L1

t for some 1 ≤ s, t ≤ n with s 6= t, then m and m′

are adjacent and so Kn is a subgraph of Γ(M,N). Thus ω(Γ(M,N)) ≥ n.

If m,m′ ∈ L1
s for some 1 ≤ s ≤ n, then m,m′ are not adjacent because

ann(Ms) 6⊆ ImIm′ and so the elements of L1
s have same color. On the other

hand, if x ∈ Lt with t > 1, then there is not a complete subgraph Kh of

Γ(M,N) containing x, such that h ≥ n. Thus ω(Γ(M,N)) = n ≤ χ(Γ(M,N)).

Also, if x ∈ Lt with t > 1, then there is an s with 1 ≤ s ≤ n such that x is not

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
24

-1
1-

21
 ]

 

                             8 / 11

https://ijmsi.com/article-1-956-fa.html


A submodule-based zero divisor graphs for modules 155

adjacent to each element of L1
s. Thus the color of x is same as the elements of

L1
s. Thus χ(Γ(M,N)) = n. �

The Kuartowski’s Theorem states: A graph G is planar if and only if it

contains no subgraph homeomorphic to K5 or K3,3.

Theorem 3.5. Let N be a nonzero proper submodule of M such that N is not

prime. Then Γ(M,N) is not planar.

Proof. Assume that M =
⊕

i∈I Mi, where Mi’s are non-isomorphic simple sub-

modules of M and N =
⊕

i∈A Mi for some A ⊂ I. Let I \ A = {i, j}. Then

Γ(M,N) is a complete bipartite graphKn,m, where n = (|Mi|−1)(
∏

k∈I−{i,j} |Mk|)

and m = (|Mj | − 1)(
∏

k∈I−{i,j} |Mk|). By hypotheses N is a nonzero and Mi’s

are non-isomorphic, so we have n,m ≥ 3. Hence Γ(M,N) has a subgraph

homeomorphic to K3,3. The cases |I \ A| ≥ 3 are similar to that of the case

|I \A| = 2. �

Theorem 3.6. A nonzero submodule N of M is prime if and only if Z∗(M,N) =

∅.

Proof. Let M =
⊕

i∈I Mi, where Mi’s are non-isomorphic simple submodules

of M and N is prime. Then N =
⊕

i∈I\{k} Mi, for some k ∈ I. If x ∈

Z∗(M,N), then there exists a y ∈ M \ N such that IxIyM ⊆ N . If x 6= y,

then Rx ∩ Ry ⊆ N , by Theorem 3.1. Thus either Mk 6⊆ Rx or Mk 6⊆ Ry.

Hence, either Rx ⊆ N or Ry ⊆ N , a contradiction. Now, suppose that x = y

so by I2xM ⊆ N and hypotheses IxM ⊆ N . Thus Ix+nIxM ⊆ N for every

0 6= n ∈ N . By a similar argument, we have either x ∈ N or x + n ∈ N , a

contradiction. Hence, Z∗(M,N) = ∅.

Conversely, assume that Z∗(M,N) = ∅. Then ann(M/N) is prime ideal of

R by Proposition 2.3 and there exists a k ∈ I such that ann(M/N) = ann(Mk).

Hence, N =
⊕

i∈I\{k} Mi is a prime submodule of M . �

A proper submodule N of M is called 2-absorbing if whenever a, b ∈ R,

m ∈ M and abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ ann(M/N), see

[10, 11]. In the following results, we study the behavior of Γ(M,N) whenever

N is a 2-absorbing submodule of M .

Theorem 3.7. A submodule N of M is 2-absorbing if and only if at most two

components of M are zero in N .

Proof. Let M =
⊕

i∈I Mi, where Mi’s are non-isomorphic simple submodules

of M . Suppose that N is a 2-absorbing submodule of M and N =
⊕

i∈A Mi,

where A = I \ {s, t, k}. Since for all i ∈ I, ann(Mi) is prime, there are a ∈

ann(Ms) \ (ann(Mt) ∪ ann(Mk)), b ∈ ann(Mt) \ (ann(Ms) ∪ ann(Mk)) and

c ∈
⋂

j∈I\(A−{s,t}) ann(Mj)\ (ann(Ms)∪ann(Mt)). Now, abc ∈ ann(M/N) but

ab 6∈ ann(M/N), ac 6∈ ann(M/N) and bc 6∈ ann(M/N). This contradict with
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Theorem 2.3 in [10]. Thus |A| ≥ |I| − 2 and at most two components of M are

zero in N .

Conversely, if one component ofM is zero inN , thenN is a prime submodule

of M . Suppose that N =
⊕

i∈A Mi, where A = I \ {i, j}. Thus Mi,Mj 6⊆ N .

Suppose that a, b ∈ R, (mi)i∈I = m ∈ M\N and abm ∈ N . Then eithermi 6= 0

or mj 6= 0. If mi 6= 0 and mj 6= 0, then ab ∈ ann(Mi)∩ann(Mj) = ann(M/N).

If mi 6= 0 and mj = 0, then ab ∈ ann(Mi) and so either a ∈ ann(Mi) or

b ∈ ann(Mi). Hence, am ∈ N or bm ∈ N . The case mi = 0 and mj 6= 0,

is similar to the previous case. Therefore, N is a 2-absorbing submodule of

M . �

Theorem 3.8. N is a 2-absorbing submodule of M if and only if Z∗(M,N) = ∅

or Γ(M,N) is a complete bipartite graph.

Proof. LetN be a 2-absorbing submodule ofM . IfN is prime, then Z∗(M,N) =

∅, by Theorem 3.6. Now, assume that N =
⊕

i∈I\{j,k} Mi for some j, k ∈ I

and (mi)i∈I = m ∈ M \ N . Thus Im =
⋂

{i∈I:mi=0} ann(Mi). If mj 6= 0 and

mk 6= 0, then m 6∈ Z(M,N). Let V1 = {(mi)i∈I ∈ M \ N : mj = 0} and

V2 = {(mi)i∈I ∈ M \ N : mk = 0}. Thus m − m′ is an edge of Γ(M,N) for

every m ∈ V1 and m′ ∈ V2. Also, every vertices in V1 and V2 are not adjacent.

Hence, Γ(M,N) is a complete bipartite graph.

Now, suppose that Γ(M,N) is a complete bipartite graph and N is not 2-

absorbing. By Theorem 3.7, there are at least three components Ms,Mt,Mk

such that Ms,Mt,Mk 6⊆ N . For i = s, t, k let vi = (mi)i∈I , where mi 6= 0

and mj = 0 for all j 6= i. Then vs − vt − vk − vs is a cycle in Γ(M,N). Thus

gr(Γ(M,N)) = 3 and so Γ(M,N) is not bipartite graph, by Theorem 1 of Sec.

1.2 in [5]. Hence, N is a 2-absorbing submodule of M . �

Example 3.9. Let M = Z2⊕Z5⊕Z7. Then every nonzero submodule N of M

is 2-absorbing. Thus either Z∗(M,N) = ∅ or Γ(M,N) is a complete bipartite

graph. In particular, if N = Z7, then Γ(M,N) = K7,28.
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